PROJECT LOCATION
BR# W-25-006

25% SUBMITTAL

DESIGN DESIGNATION (US 202/ST 10)

FUNCTIONAL CLASSIFICATION
URBAN ARTERIAL

INDEX

SHEET NO.
1
2
3-4
5-9
10-12
13
14-15
16-20
21-25
26
27
28-29
30-33
34-37
38-41
42
43-52
53-69

DESIGN SPEED
30 MPH

ADT (2018)
13835

ADT (2028)
15282

K
6.3%

D
62%

T (PEAK HOUR)
2.4%

T (AVERAGE DAY)
2.9%

DHV
872

DDHV
540

STATE
MA

PROJECT FILE NO. 400103

PROJECT BEGIN
STA. 3+71.96
N 2867387.6551
E 313023.6945

PROJECT END
STA. 15+52.38
N 2868232.4973
E 313600.2021

LENGTH OF PROJECT = 1180.42 FEET = 0.224 MILES

SCALE: 1" = 100'
WESTFIELD
US 202/ST 10 (SOUTHWICK RD) OVER LITTLE RIVER

HIGHWAY GUARD DETAILS
TRAFFIC SIGNAL CONDUIT
WATER SUPPLY ALTERATIONS
DRAINAGE DETAILS

FOR PROFILE:
SEE SHEET NO. 11
FOR PROFILE: SEE SHEET NO. 12
FOR PROFILE:
SEE SHEET NOS. 13
FOR PROFILE: SEE SHEET NO. 14-15
MILL STREET CONSTRUCTION BASELINE DATA

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TANGENT/CURVE DATA</th>
<th>NORTHING</th>
<th>EASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 87+00.01</td>
<td>L = 17.31 F</td>
<td>2868089.964</td>
<td>312892.5944</td>
</tr>
<tr>
<td>STA 89+18.28</td>
<td>L = 103.87 F</td>
<td>2868082.7185</td>
<td>312892.5944</td>
</tr>
<tr>
<td>STA 91+10.09</td>
<td>L = 231.81 F</td>
<td>2868072.5123</td>
<td>312891.8964</td>
</tr>
<tr>
<td>STA 91+37.74</td>
<td>L = 137.251 F</td>
<td>2868084.7233</td>
<td>312890.1928</td>
</tr>
<tr>
<td>STA 104+22.23</td>
<td>L = 74.50 F</td>
<td>2868009.9803</td>
<td>312885.6920</td>
</tr>
</tbody>
</table>

CURVES TABLE

<table>
<thead>
<tr>
<th>CURVE</th>
<th>LENGTH</th>
<th>TANGENT</th>
<th>DELTA RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>6.26</td>
<td>103.87 F</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>10.09</td>
<td>55.30 F</td>
<td>3.37</td>
</tr>
<tr>
<td>23</td>
<td>6.26</td>
<td>103.87 F</td>
<td>2.00</td>
</tr>
<tr>
<td>24</td>
<td>11.06</td>
<td>27.25 F</td>
<td>3.57</td>
</tr>
<tr>
<td>25</td>
<td>3.70</td>
<td>50.00 F</td>
<td>1.00</td>
</tr>
</tbody>
</table>

SURVEY TRAVERSE DATA

<table>
<thead>
<tr>
<th>POINT</th>
<th>ELEVATION</th>
<th>NORTH</th>
<th>EAST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5016</td>
<td>162.643</td>
<td>2868256.209</td>
<td>313016.576</td>
<td>MPKN 5016 SET</td>
</tr>
<tr>
<td>5017</td>
<td>179.465</td>
<td>2868539.832</td>
<td>312857.964</td>
<td>MPKN 5018 FND</td>
</tr>
</tbody>
</table>

BOUND LOCATION - MILL ST

<table>
<thead>
<tr>
<th>STATION</th>
<th>OFFSET</th>
<th>NORTH</th>
<th>EAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>102+70.59</td>
<td>25.54'</td>
<td>2868182.1257</td>
<td>313118.8999</td>
</tr>
</tbody>
</table>

LEGEND

- CURVE
- WHEELCHAIR RAMP/DRIVEWAY
TRAFFIC SIGN SUMMARY

<table>
<thead>
<tr>
<th>Reference</th>
<th>Left Lane 1</th>
<th>Left Lane 2</th>
<th>Left Lane 3</th>
<th>Right Lane 1</th>
<th>Right Lane 2</th>
<th>Right Lane 3</th>
<th>Left Lane 4</th>
<th>Right Lane 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 1</td>
<td>24" 24"</td>
<td>24"</td>
<td>24"</td>
<td>18"</td>
<td>24"</td>
<td>24"</td>
<td>18"</td>
<td>24"</td>
</tr>
<tr>
<td>Description</td>
<td>SPEED LIMIT</td>
<td>U.S. ROUTE 99</td>
<td>U.S. ROUTE 99</td>
<td>STOP</td>
<td>STOP</td>
<td>STOP</td>
<td>STOP</td>
<td>STOP</td>
</tr>
<tr>
<td>Location 2</td>
<td>24" 24"</td>
<td>24"</td>
<td>24"</td>
<td>18"</td>
<td>24"</td>
<td>24"</td>
<td>18"</td>
<td>24"</td>
</tr>
<tr>
<td>Description</td>
<td>FREE STREET</td>
<td>DARK GRAY</td>
</tr>
</tbody>
</table>

Note: See 2009 Manual on Uniform Traffic Control Devices and Appendix C for exact specifications on size, dimensions, and colors. Also refer to the 1999 MUTCD Manual for relating section M 8.20.0.
CITY/TOWN STREET/ROUTE # OR NAME

TRAFFIC SIGNAL DATA

1. PHASES ASSOCIATED BY A SOLID LINE SHALL NOT OPERATE CONCURRENTLY.
2. PHASES ASSOCIATED BY A DASHED LINE MAY OPERATE CONCURRENTLY.
3. THROUGH MOVEMENTS MAY INCLUDE RIGHT TURNS.
4. EMERGENCY VEHICLE PREEMPTION SHALL BE ACTUATED BY AN OPTICAL SIGNAL FROM AN OPTICAL EMITTER MOUNTED ON AN OPTICAL DETECTOR, THE CONTROLLER WILL THEN CONTROL THE SIGNAL INDICATIONS FOR THAT INTERSECTION BY AN OPTICAL DETECTOR.
5. PREEMPTION RECEIVERS FROM MULTIPLE APPROACHES SHALL BE LINKED TO A FOREST SCHEDULER.
6. PREEMPTION STRENGTH SIGNALS FROM MULTIPLE APPROACHES SHALL BE UPON ACTUATION OF THE PREEMPTION SIGNAL, THE CONTROLLER WILL THEN CONTROL THE SIGNAL INDICATIONS FOR THAT INTERSECTION BY AN OPTICAL DETECTOR.
7. PREEMPTION THROUGH LIGHTS.

PREFERENTIAL PHASING SEQUENCE

FIRE PREEMPTION SCHEDULE

SIGNAL IDENTIFICATION

PREEMPTION SIGNALS G,H,J,K & L SHALL HAVE 12" LED WITH 5" LOUVERED BACK PLATES.

P1-P4 NUMBER OF SEGMENTS

PRESENCE A=PULSE EXT.

ALL 12" LENS

3 6x6

40' BLACK VINTAGE MAST ARM, BASE AND FDN.

WITH RED, YELLOW, AND GREEN GRAPHIC LED.

4 2 6x6

12" LED PEDESTRIAN HOUSING TYPE INT'L.

PREEMPTION STROBE LIGHT

8' BLACK VINTAGE SIGNAL POST, BASE, & FDN.

400103_HD7 (TRAFFIC SIGNAL PLANS & DETAILS).DWG

1.5

17

3 6 3 6 6 PRESENCE - -

2 3 6 3 6 PRESENCE - -

3 3 6 3 4 4 PRESENCE - -

4 3 6 3 6 6 PRESENCE - -

5 1 6 3 6 6 PRESENCE - -
NEMA Dual Ring Phasing Notes:

1. Phases associated by a solid line shall not change simultaneously.
2. Phases associated by a dashed line may operate concurrently.
3. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.
4. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.
5. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.
6. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.
7. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.
8. Emergency vehicle preemption shall be activated by an optical signal from an optical sensor located on an approach.

Fire Preemption Schedule

<table>
<thead>
<tr>
<th>Approach</th>
<th>Configuration</th>
<th>CALEA</th>
<th>Delays</th>
<th>Delay</th>
<th>Ext. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext.</td>
<td>CALEA</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>Precedent</td>
</tr>
</tbody>
</table>

Signal Identification

1. All signs shall face away from vehicle.
2. Signs shall be at least 6' above ground and 6' above back plates.
NOTES:
1. STAGE 1 CONSTRUCTION WILL INCLUDE CONSTRUCTION OF THE EAST SIDE OF THE SUBSTRUCTURE AND SUPERSTRUCTURE OF THE BRIDGE AND ASSOCIATED FULL DEPTH PAVEMENT CONSTRUCTION OF THE APPROACHES, GUARDRAILS.
2. AFTER CONSTRUCTION OF THE BRIDGE IS COMPLETED, THE UTILITIES WILL BE RELOCATED. SEE SHEET 5 OF BRIDGE PLANS.
3. TRAFFIC WILL REMAIN ON EXISTING BRIDGE AND APPROACHES.
4. TEMPORARY TRAFFIC SIGNALS IN STAGE 1 WILL BE IN PLACE.
5. ALL TEMPORARY TRAFFIC SIGNALS ARE TO BE 4" REMOVABLE TAPE.
6. SECURE THE WORK ZONE WITH A TEMPORARY CONSTRUCTION FENCE.
NOTES:
2. TRAFFIC WILL BE MOVED TO THE NEWLY CONSTRUCTED EAST SIDE OF THE BRIDGE. TWO 11' LANES WILL BE PROVIDED OVER THE BRIDGE AND APPROACHES.
3. ALL TEMPORARY PAVEMENT MARKINGS ARE TO BE 4' REMOVABLE TAPE. TEMPORARY STOP LINES WILL BE 1' REMOVABLE TAPE.
4. SECURE THE WORK ZONE WITH A TEMPORARY CONSTRUCTION FENCE.
NOTES:

9. All work shall be performed in conformance with MUTCD and all revisions.

8. Temporary construction signs and all other temporary construction devices shall be of the size and shape shown on the plans and shall be in accordance with the requirements of the MUTCD.

7. All temporary construction signs and devices shall be adequately lighted and shall be placed at least 100 ft (30 m) from the traveled way.

6. All temporary construction signs and devices shall be removed from the highway or covered when they are not required for control of traffic.

5. The temporary closure of access, such as conduit installation, existing pavement excavation, temporary construction signing, barricades and all other necessary work zone traffic control devices shall be in place prior to the start of any work.

4. Contractors shall notify each abutter at least 24 hours in advance of the start of any work that will require temporary construction signing, barricades and all other traffic control devices.

3. Temporary construction signing, barricades and all other necessary work zone traffic control devices shall be in place prior to the start of any work.

2. All temporary traffic control work shall conform to the latest edition of the "Manual on Uniform Traffic Control Devices" (MUTCD) and all revisions.

1. All temporary traffic control work shall conform to the latest edition of the "Manual on Uniform Traffic Control Devices" (MUTCD) and all revisions.

LEGEND:

(AHEAD)

R2-10a
W20-3
W20-4
TYPICAL ONE LANE WITH alternating TRAFFIC WITH POLICE DETAIL WILL ONLY BE USED DURING WORK HOURS. TWO 11' LANES THE ADVISORY SPEED LIMIT, IF REQUIRED, SHALL BE DETERMINED BY THE ENGINEER.

MINIMUM LANE WIDTH IS TO BE 11 FEET UNLESS OTHERWISE SHOWN. MINIMUM LANE WIDTH TO BE MEASURED FROM THE EDGE OF THE ROADWAY.

MAXIMUM SPACING OF TRAFFIC DEVICES IN A TAPER (DRUMS OR CONES) IS EQUAL IN FEET TO THE SPEED LIMIT IN MPH.

DISTANCES ARE A GUIDE AND MAY BE ADJUSTED IN THE FIELD BY THE ENGINEER.

DRIVEWAY PAVEMENT PLACEMENT AND SIMILAR OPERATIONS.

DEVICES MOUNTED ON THEM, MUST PASS THE CRITERIA SET FORTH IN NCHRP REPORT 350, "RECOMMENDED PROCEDURES FOR ROADWAYS LOCAL OR LOW VOLUME ROAD TYPE.

CONSTRUCTION PHASES:

STAGE 1: DEMOlISH THE EXISTING BRIDGE AND CONSTRUCT WEST SIDE OF BRIDGE AND ASSOCIATED APPROACH WORK.

TRAFFIC CONTROL: TRAFFIC MAINTAINED ON EXISTING BRIDGE, WITH USE OF TEMPORARY TRAFFIC SIGNALS. SEE STAGE 1 DETAIL.

STAGE 2: RELOCATE UTILITIES TO PORTION OF BRIDGE CONSTRUCTED IN STAGE 1. TRAFFIC CONTROL: ALTERNATING LANE CLOSURES FOR TRENCHING OF UTILITIES.

STAGE 3: RECONSTRUCT MILL STREET AND CITY VIEW ROAD APPROACHES. TRAFFIC CONTROL: MILL STREET WILL HAVE ALTERNATING LANE CLOSURES, CITY VIEW ROAD WITH DETOUR. SEE CITY VIEW ROAD DETOUR.

STAGE 4: REMOVAL OF BRIDGE IN STAGE 1 AND TEMPORARY TRAFFIC SIGNALS. TRAFFIC CONTROL: TWO 11' LANES ON NEWLY CONSTRUCTED EAST PORTION OF BRIDGE CONTROLLED BY TEMPORARY TRAFFIC SIGNALS. SEE STAGE 4 DETAIL.

STAGE 5: CONSTRUCT FINAL APPROACH WORK, STIRRUP, RESURFACING, TRAFFIC SIGNAL INSTALLATION, SIGNS, DRAINAGE, AND UTILITIES. TRAFFIC CONTROL: ALTERNATING LANE CLOSURES.
Suggested Work Zone Warning Sign Spacing

<table>
<thead>
<tr>
<th>ROAD TYPE</th>
<th>MINIMUM BETWEEN SIGNS</th>
<th>MINIMUM BETWEEN SIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 ft (6 m)</td>
<td>20 ft (6 m)</td>
</tr>
<tr>
<td></td>
<td>30 ft (9 m)</td>
<td>30 ft (9 m)</td>
</tr>
<tr>
<td></td>
<td>40 ft (12 m)</td>
<td>40 ft (12 m)</td>
</tr>
<tr>
<td></td>
<td>50 ft (15 m)</td>
<td>50 ft (15 m)</td>
</tr>
</tbody>
</table>

Stopping Sight Distance as a Function of Speed

<table>
<thead>
<tr>
<th>SPEED LIMIT (Mph)</th>
<th>DISTANCE (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>60</td>
<td>360</td>
</tr>
<tr>
<td>70</td>
<td>420</td>
</tr>
</tbody>
</table>

Taper Length Criteria for Temporary Traffic Control Zones

<table>
<thead>
<tr>
<th>TYPE OF TAPER</th>
<th>TAPER LENGTH (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLECTORIZED</td>
<td></td>
</tr>
<tr>
<td>REFLECTORIZED</td>
<td></td>
</tr>
</tbody>
</table>

Formulas for Determining Taper Lengths

1. \(L = \frac{S - D}{S} \)
2. \(L = \frac{S - D}{S} \)

Where:
- \(S \) is the speed limit (in ft/s)
- \(D \) is the distance between signs

* Increase slope ratio for higher speeds.
Drainage Structure Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Station</th>
<th>Offset</th>
<th>Inv. Elev.</th>
<th>Inv. Elev. In</th>
<th>Inv. Elev. Out</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMH 1</td>
<td>DMH</td>
<td>3+73.50</td>
<td>16.44</td>
<td>170.05</td>
<td></td>
<td></td>
<td>EXISTING</td>
</tr>
<tr>
<td>CB 1</td>
<td>CB</td>
<td>3+82.73</td>
<td>20.11</td>
<td>177.90</td>
<td></td>
<td></td>
<td>EXISTING</td>
</tr>
<tr>
<td>CB 1A</td>
<td>CB</td>
<td>3+85.95</td>
<td>28.82</td>
<td>176.91</td>
<td></td>
<td></td>
<td>EXISTING</td>
</tr>
<tr>
<td>DMH 2</td>
<td>CB</td>
<td>5+68.32</td>
<td>19.07</td>
<td>179.52</td>
<td></td>
<td></td>
<td>ADJUST</td>
</tr>
<tr>
<td>CB 3A</td>
<td>CB</td>
<td>5+61.61</td>
<td>21.48</td>
<td>174.80</td>
<td></td>
<td></td>
<td>REMOVE</td>
</tr>
<tr>
<td>CB 3A</td>
<td>CB</td>
<td>5+68.10</td>
<td>32.00</td>
<td>176.30</td>
<td></td>
<td></td>
<td>PROGRAM</td>
</tr>
<tr>
<td>CB 3A</td>
<td>CB</td>
<td>6+02.89</td>
<td>24.12</td>
<td>175.77</td>
<td></td>
<td></td>
<td>REMOVE</td>
</tr>
</tbody>
</table>

Notes:
- Scale: 1" = 20'
Drainage Structure Data

<table>
<thead>
<tr>
<th>NO.</th>
<th>TYPE</th>
<th>STATION</th>
<th>BASALT</th>
<th>TOT D/B</th>
<th>RD. B/B</th>
<th>TOT D/B</th>
<th>RD. B/B</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMH 3</td>
<td>DMH</td>
<td>ROUTE 202 ST 10</td>
<td>8+34.02</td>
<td>6.34</td>
<td>189.08</td>
<td>157.01</td>
<td>164.15</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 1</td>
<td>CB</td>
<td>ROUTE 202 ST 10</td>
<td>8+35.76</td>
<td>-2.06</td>
<td>224.35</td>
<td>194.35</td>
<td>184.93</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 2</td>
<td>CB</td>
<td>ROUTE 202 ST 10</td>
<td>8+35.94</td>
<td>-2.30</td>
<td>166.00</td>
<td>136.00</td>
<td>126.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 4</td>
<td>DMH</td>
<td>ROUTE 202 ST 10</td>
<td>8+35.76</td>
<td>29.76</td>
<td>189.27</td>
<td>157.27</td>
<td>164.15</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 1</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>9.95</td>
<td>162.30</td>
<td>132.30</td>
<td>122.90</td>
<td>MODEL</td>
</tr>
<tr>
<td>CB 2</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>12.12</td>
<td>162.40</td>
<td>132.40</td>
<td>123.00</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 10</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>-18.20</td>
<td>164.20</td>
<td>134.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 11</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>-18.20</td>
<td>164.20</td>
<td>134.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 5</td>
<td>DMH</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>19.90</td>
<td>163.20</td>
<td>133.20</td>
<td>123.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 14</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>-18.00</td>
<td>163.20</td>
<td>133.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 14A</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>-18.00</td>
<td>163.20</td>
<td>133.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 15</td>
<td>CB</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>-18.00</td>
<td>163.20</td>
<td>133.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 6</td>
<td>DMH</td>
<td>MILL STREET</td>
<td>50+48.85</td>
<td>19.90</td>
<td>163.20</td>
<td>133.20</td>
<td>124.90</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 18</td>
<td>CB</td>
<td>CITY VIEW RD</td>
<td>53+34.46</td>
<td>12.03</td>
<td>164.74</td>
<td>134.74</td>
<td>125.40</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>CB 19</td>
<td>CB</td>
<td>CITY VIEW RD</td>
<td>53+34.46</td>
<td>-12.03</td>
<td>164.74</td>
<td>134.74</td>
<td>125.40</td>
<td>PROPOSED</td>
</tr>
<tr>
<td>DMH 10</td>
<td>DMH</td>
<td>CITY VIEW RD</td>
<td>53+34.46</td>
<td>-0.35</td>
<td>164.74</td>
<td>134.74</td>
<td>125.40</td>
<td>PROPOSED</td>
</tr>
</tbody>
</table>

Scale: 1" = 20'
PROPOSED TEMP SANDBAGS TO DIVERT RIVER FLOW

WETLAND
PROPOSED RIPRAP (TYP)

PROPOSED TEMP SANDBAGS TO DIVERT RIVER FLOW

WETLAND RELOCATION AREA = 214.6 SF

Mid +53.05
PCC +43.73

HATCH KEY

AFFECTED BORDERING VEGETATED WETLANDS
TEMPORARILY AFFECTED WETLAND AREA
PROPOSED WETLAND RELOCATION

WETLAND RELOCATION AREA (SF)

<table>
<thead>
<tr>
<th>WETLAND RELOCATION AREA (SF)</th>
<th>WETLAND RESTORATION AREA (SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>177.47</td>
<td>1107.74</td>
</tr>
</tbody>
</table>

TOTAL

178.83

TOTAL

1107.74